skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Duvall, Alison"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available July 12, 2026
  2. Abstract. pyTopoComplexity is a Python package designed for efficient and customizable quantification of topographic complexity using four advanced methods: two-dimensional continuous wavelet transform analysis, fractal dimension estimation, rugosity index, and terrain position index calculations. This package addresses the lack of open-source software for these advanced terrain analysis techniques essential for modern geomorphology and geohazard research, enhancing data comparison and reproducibility. By assessing topographic complexity across multiple spatial scales, pyTopoComplexity allows users to identify characteristic morphological scales of studied landforms. The software repository also includes a Jupyter Notebook that integrates components from the surface-process modeling platform Landlab (Hobley et al., 2017), facilitating the exploration of how terrestrial processes, such as hillslope diffusion and stream power incision, drive the evolution of topographic complexity over time. When these complexity metrics are calibrated with absolute age dating, they offer a means to estimate in situ hillslope diffusivity and fluvial erodibility, which are critical factors in determining the efficiency of landscape recovery after significant geomorphic disturbances such as landslides. By integrating these features, pyTopoComplexity expands the analytical toolkit for measuring and simulating the time-dependent persistence of geomorphic signatures against environmental and geological forces. 
    more » « less
  3. ABSTRACT Earthquake-induced landslides can record information about the seismic shaking that generated them. In this study, we present new mapping, Light Detection and Ranging-derived roughness dating, and analysis of over 1000 deep-seated landslides from the Puget Lowlands of Washington, U.S.A., to probe the landscape for past Seattle fault earthquake information. With this new landslide inventory, we observe spatial and temporal evidence of landsliding related to the last major earthquake on the Seattle fault ∼1100 yr before present. We find spatial clusters of landslides that correlate with ground motions from recent 3D kinematic models of Seattle fault earthquakes. We also find temporal patterns in the landslide inventory that suggest earthquake-driven increases in landsliding. We compare the spatial and temporal landslide data with scenario-based ground motion models and find stronger evidence of the last major Seattle fault earthquake from this combined analysis than from spatial or temporal patterns alone. We also compare the landslide inventory with ground motions from different Seattle fault earthquake scenarios to determine the ground motion distributions that are most consistent with the landslide record. We find that earthquake scenarios that best match the clustering of ∼1100-year-old landslides produce the strongest shaking within a band that stretches from west to east across central Seattle as well as along the bluffs bordering the broader Puget Sound. Finally, we identify other landslide clusters (at 4.6–4.2 ka, 4.0–3.8 ka, 2.8–2.6 ka, and 2.2–2.0 ka) in the inventory which let us infer potential ground motions that may correspond to older Seattle fault earthquakes. Our method, which combines hindcasting of the surface response to the last major Seattle fault earthquake, using a roughness-aged landslide inventory with forecasts of modeled ground shaking from 3D seismic scenarios, showcases a powerful new approach to gleaning paleoseismic information from landscapes. 
    more » « less
  4. Deep canyons along the Salmon, Snake, and Clearwater rivers in central Idaho, USA suggest long-lasting transient incision, but the timing and drivers of this incision are not well understood. The perturbation of the Yellowstone hotspot, eruption of flood basalts, and drainage of Lake Idaho all occurred within or near to this region, but the relationship among these events and incision is unclear. Here, we utilized in situ 10Be cosmogenic radionuclide concentrations for 46 samples (17 new) of fluvial sediment across the region to quantify erosion rates, calibrate stream power models, and estimate incision timing. We estimate that transient incision along the Salmon River began prior to ca. 10 Ma. However, canyon age decreases to ca. 5 Ma or earlier farther to the north. For a group of tributaries underlain by basalt, we use the age of the basalt to estimate that local transient incision began between ca. 11.5 and 5 Ma. Based on these timing constraints, the canyons along the Salmon and Clearwater rivers predate the drainage of Lake Idaho. We argue that canyon incision was triggered by events related to the Yellowstone hotspot (e.g., basalt lava damming, subsidence of the Columbia Basin, reactivation of faults, and/or lower crustal flow). Furthermore, our models suggest basalt may be more erodible than the other rock types we study. We show that lithology has a significant influence on fluvial erosion and assumptions regarding river incision model parameters significantly influence results. Finally, this study highlights how geodynamic processes can exert a significant influence on landscape evolution. 
    more » « less
  5. Abstract. Here we examine the landscape of New Zealand'sMarlborough Fault System (MFS), where the Australian and Pacific plates obliquelycollide, in order to study landscape evolution and the controls on fluvialpatterns at a long-lived plate boundary. We present maps of drainageanomalies and channel steepness, as well as an analysis of the plan-vieworientations of rivers and faults, and we find abundant evidence ofstructurally controlled drainage that we relate to a history of drainagecapture and rearrangement in response to mountain-building and strike-slipfaulting. Despite clear evidence of recent rearrangement of the western MFSdrainage network, rivers in this region still flow parallel to older faults,rather than along orthogonal traces of younger, active strike-slip faults.Such drainage patterns emphasize the importance of river entrenchment,showing that once rivers establish themselves along a structural grain,their capture or avulsion becomes difficult, even when exposed to newweakening and tectonic strain. Continued flow along older faults may alsoindicate that the younger faults have not yet generated a fault damage zonewith the material weakening needed to focus erosion and reorient rivers.Channel steepness is highest in the eastern MFS, in a zone centered on theKaikōura ranges, including within the low-elevation valleys of main stemrivers and at tributaries near the coast. This pattern is consistent with anincrease in rock uplift rate toward a subduction front that is locked on itssouthern end. Based on these results and a wealth of previous geologicstudies, we propose two broad stages of landscape evolution over the last 25 million years of orogenesis. In the eastern MFS, Miocene folding above blindthrust faults generated prominent mountain peaks and formed major transverserivers early in the plate collision history. A transition to Pliocenedextral strike-slip faulting and widespread uplift led to cycles of riverchannel offset, deflection and capture of tributaries draining across activefaults, and headward erosion and captures by major transverse rivers withinthe western MFS. We predict a similar landscape will evolve south of theHope Fault, as the locus of plate boundary deformation migrates southwardinto this region with time. 
    more » « less